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Chapter 1

Introduction

An animal’s body grows and changes over its lifetime, yet it can retain and improve its
behavioural skills. Likewise the form of a species can evolve into new forms that are fit
enough to reproduce. Robustness in face of such changes on either time scale is impressive
especially when compared with the lack of robustness in robots. Robots in controlled,
structured environments can be fashioned to perform some wonderful tasks. However,
unstructured environments pose large problems, and unstructured bodies pose an even
greater challenge [5].

Morphological change has been demonstrated to accelerate evolution of robust be-
haviour in one instance [3]. However, it is unclear exactly how or why this happens. It
is thought that the initial morphological form may serve as a scaffolding for the following
form [10]. It may be that morphological variation merely adds noise to the simulation
such that individuals that rely on fragile sensitivities are excised from the population[8].

Bongard showed the evolution of light following behaviour was accelerated for robots
that grew from a leg-less anguilliform to a legged hexapod when compared to evolving
a hexapod with no morphological change[3]. My project is a critical replication of that
experiment using a different robot platform and aim. This project evolves a robot with
varying degrees of conservation between the earlier and later forms to help answer the
question, under what conditions does morphological change accelerate evolution?

In Bongard’s experiment the infant form is conserved entirely in the adult form. The
infant is a leg-less animal that becomes the adult spine and continues to assist the adult’s
mobility. Currently, there is no principled or direct way of choosing how one ought to
change the morphology of a robot to try and acquire this evolutionary acceleration and
robustness. Intuition suggests that conservation of the infant form is probably a good

thing. It may stagger the problem of finding a controller by tackling a subset of the
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problem and building upon that solution. However, cases are bound to crop up that defy
one’s intuitions and expectations. I suggest that Bongard’s experiment [3] was just such
a case.

The aim of this project is to consider a robot morphology where the conservation
between the infant and adult form may be fruitfully compared. My hypothesis is that
the morphological change that conserves the infant form may achieve an evolutionary
acceleration and the non-conservative morphological change will not be accelerated. In
the event that the non-conservative morphological change is accelerated, one must account
for this somehow. A feasible mechanism could be that although the infant morphology
is not conserved, part of the infant controller is conserved and that could explain the

evolutionary acceleration. To that end, a variation of the controllers is considered.



Chapter 2

Method

Notation Conventions

The following notation conventions are used: Lower case symbols denote a scalar quantity
e.g., s implies s € R. Bold lower case symbols denote a vector quantity e.g., v implies
v € R™. Bold upper case symbols denote a matrix quantity e.g., M implies M € R™*",
Vectors with a circumflex, or “hat”, denote a unit vector e.g., ¥ implies ||¥|| = 1. Angle
brackets denote the mean of the variable < x >. Statistical significance level is denoted

with a series of asterisks: 0.05 (*), 0.01 (**), and 0.001 (***).

2.1 Overview

This experiment uses a two-dimensional, aquatic-like environment to determine what kinds
of morphological changes may accelerate evolution. The morphological forms—inspired
by frog metamorphosis—have been selected such that the conservation of the infant form
to the adult form may be varied. Figure 2.1 shows the two principle forms which may be
parametrically varied by two variables tail length and foot length I;,[¢ € [0, 1] respectively.
The full range of morphological change will be described in detail in section 2.5. In the
inspiring case, the individual begins as a “tadpole” bearing only a tail. It transforms into

a “frog” with four limbs. Its task is to swim to a target.

2.2 Physics Model

This experiment uses the following physical model to simulate an individual in a two-
dimensional aquatic-like environment. The aim of the simulation is to provide an aquatic

environment, but it is not intended to provide a realistic environment such that a controller
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Body Plans

a) tadpole b) frog

(I, 1) = (1,0) (I, 1r) = (0,1)

Figure 2.1: The body plans are parameterised by tail length I, and foot length [;. a) represents

the infant “tadpole” form, and b) represents the adult “frog” form.

evolved in simulation could be easily transferred to a real robot. It is thought, however,

that applying the same method with a real robot would produce comparable results.

The virtual robot is composed of six rigid bodies: one central body, one tail segment,
and four feet segments. The tail and feet are connected to the central body by pinwheel
joints. Eight configuration variables {qi,qo,...,qs} describe the body as shown in Fig-
ure 2.2. The position of the body is denoted by the vector (qi,q2). The angle of the

central body measured counter-clockwise to the fig axis is denoted by ¢3. The angle of

the tail and four feet are denoted by qq,...,gs, respectively. Eight corresponding motion
variables {u,usg,...,ug} describe the generalised speeds of the body u; = Cfiqti.

2.2.1 Simulating an Aquatic-like Environment

For each limb a drag force Fp opposes its direction of motion, which is given by Equa-
tion 2.5 where p is the density of the fluid, ¢4 is the drag coefficient, [ is the length of the
limb, w is the width of the limb, fi is the normal vector of the limb, v is the velocity of
the center of mass of the limb, v, is the velocity of the current, v is the relative velocity of
the limb with respect to the current, A is the reference area—an orthographic projection
of the limb shape on a plane perpendicular to the direction of motion. Figure 2.3 shows
these values for a limb. The shape of the limb is taken to be a rod of length [, width w,
and depth d. However, for the purposes of computing the drag force, the width of the limb

w is set to zero since w < | and the force it might contribute is not considered significant.
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Diagram of Configuration Variables

(0,0)

Figure 2.2: Diagram of the configuration variables {q1, go, . .., gs} that fully describe the physical

state of the body at time t. The position vector r(s;) is the location of sensor s;.

A = 1d[¥-a+lw [ %1 (2.1)
w = 0 (2.2)
vV = Vp— V. (2.3)
F, — —%pcd V][4 ¢ (2.4)
Fp = —%pcd ld |v-ilv (2.5)

In addition, a drag force and drag torque are exerted on the central body. The full

equations of motion are given in the Appendix A.1.1.

2.2.2 Collisions

Inter-body collisions are permitted among the limbs, which may freely move through one

another.!

However, the limbs are constrained to not penetrate the central body. When
the angle of a limb reaches |¢| = 7, a penalty torque T,(¢q) opposes further motion as

shown in Equation 2.6.

I This is not thought objectionable because one can imagine constructing a robot with limbs arranged

on planes such that the limbs could pass each other unobstructed.
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Diagram of Drag Force

Ve

=
N Y
NN "

Figure 2.3: The independent variables that determine the drag force F'p are the length [, width

w, depth d (not shown), velocity of limb vy, velocity of current v, and normal vector

n.
- .
T.(¢)) = Tmax bound(g;, (7, 5)) for i € [4, 8] (2.6)
-1 a>xzANb>=x
bound(z, (a,b)) = 1 a<zrzANb<zx (2.7)

0 otherwise

2.3 Controller

The controller used for the robot is a Continuous Time Recurrent Neural Network (CTRNN)[1].
The dynamics of a neuron y; is given by Equation 2.8 with time constant 7; € [0.1,100],

weights wj; € [—4,4], bias 0; € [-2,2], sensors s; € R, and sensor weights n;; € [—4,4].

dy; m s ‘
Ti% = -y + Z wj,-a(yj —6;)+ Z nj;sj for i € [1,5] (2.8)
=1 =1
1
olx) = = (2.9)

Table 2.1 describes the sensors. A range finder for a target is given by the s3 and
s4 sensors. Proprioceptive sensors are given by the ss, sg, ..., S14 sensors. Five motor
neurons are used with weighted inputs from all sensors. Each neuron exerts a torque on

an associated limb. The torque for each limb 7T'(¢;) is given in Equation 2.10.



Sensor Variable Value Description

51 | (w1, us) — vell relative translational speed

59 U3 angular speed

S3 ||lr(s3) — r(target)|| | distance to target from left sensor
S4 ||lr(s4) — r(target)|| | distance to target from right sensor
S5 q4 position of tail

S6 Uy speed of tail

S719; q5-+i position of each foot i € [0, 3]

58492 Usti speed of each foot i € [0, 3]

Table 2.1: Description of available sensors

T(giv3) = Tmar clip(yi) + Te(qits) for i € [1,5] (2.10)
1 z>1
cip(z) = (-1 z<-1 (2.11)

T otherwise

2.4 Representation: Genetic Encoding

The CTRNN parameters are specified by a real vector gene g € [0, 1]'%°,

Each gene
component g is associated with one and only one of the CTRNN parameters 7;, wj;, 6;,
and nj;. The wyj;, 0;, and nj; parameters are linearly mapped from the domain of the

gene [0, 1] to the domain of each parameter. The 7 parameter uses a non-linear mapping

75 = 1072+,

2.5 Morphological Change

Morphological change is considered over phylogenetic and ontogenetic time. Two adult
forms are evolved: A) frog with a tail (I;,1f) = (1,1). B) frog without a tail (I;,15) = (0, 1).
The control case is no morphological change denoted An and Bn. The first experimental
cases concern phylogenetic change denoted Ap and Bp, which are divided into phases
{pi}. The second experimental case concerns ontogenetic change denoted Ao and Bo.

Figures 2.4 and 2.5 shows the tail length /; and feet length /¢ for each experimental case.
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Variations of Morphological Change for A

Figure 2.4: Shows how the morphology changes for each phase p; for adult forms A where
the infant form is conserved. An does not change its morphology. Ap changes its
morphology over phylogenetic time. Ao changes its morphology over ontogenetic and

phylogenetic time.

The overarching concern in choosing how the morphology would change was that one
set of cases would conserve the infant form in the adult form A, and another case where
it was not B. One nice aspect of these cases is that the last phase of Ap, Ao, Bp, and Bo
are directly comparable to An and Bn respectively. Because the morphological settings
are the same, one can determine whether evolution has actually gained an advantage by
going through the preceding phases or not. Despite those advantages, the choice of how
the morphology ought to change still has a lot of free parameters that were chosen based

on intuition and symmetry.

2.6 Controller Variation

In the test cases Bp and Bo the infant form is not conserved in the adult form. However,
the controller may conserve some behaviour acquired in the infant form that is useful in
the adult form, which may accelerate evolution. To determine whether this happens, two
types of CTRNN controllers are considered: 1) A “lobotomised” controller, which has
two independent CTRNNSs, one for the tail and one for the feet. 2) A “non-lobotomised”
controller, which has a fully connected CTRNN that controls both the tail and feet. Both
CTRNN types are shown in Figure 2.6.

The sensors are altered for the “lobotomised” controller. The tail brain does not receive
proprioceptive sensors from the other limbs {s7, sg, ..., s14}. Likewise, the foot brain does

not receive proprioceptive sensors from the tail s5 and sg. Otherwise, the sensors are the

4

phase
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Variations of Morphological Change for B

(ltvlf:

pi : P P Py ps
] i ittt T (] ML ‘ ———
1 1 2 3 4

Figure 2.5: Shows how the morphology changes for each phase p; for adult forms B where the
infant form is mot conserved. Bn does not change its morphology. Bp changes its
morphology over phylogenetic time. Bo changes its morphology over ontogenetic and

phylogenetic time.

same.

2.7 Fitness Function

The fitness function f; returns the mean of the sensor value normalised by the target
distance. The sensor detects its distance from the target. The sensors are located on the
left and right side of the central body as shown in Figure 2.2. Assuming an individual
starts at the origin, the initial value of s3 is close to the target distance ||r(target)|| hence
fi is close to one. As the sensor approaches the target f; approaches zero. Categorising
this fitness function using Nolfi and Floreano’s terminology, it is a Behavioural, Explicit
and Internal (BEI) according to [11]. It rates the behaviour not the function. The fitness
is computed explicitly from a set of independent variables as shown in Equation 2.12
rather than an implicit measure such as a coevolutionary algorithm might use. The fitness
function is internal since the information is available to sensors on the machine rather
than that information being granted by fiat in a simulation or an external entity were it

a real robot.

2Note on implementation: the “lobotomised” controller code is the same as the “non-lobotomised” with

a specific set of weights w;; and sensor coefficients nj; set to zero.
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Variation of CTRNN Controllers

a) normal brain b) lobotomised brain
o— ¢ *—0
e e

Figure 2.6: a) Fully connected CTRNN controller. b) Independent CTRNN controllers for the
tail and legs. The dashed lines represent the connections from the tail. The solid

lines represent connections from or to a motor neuron associated with a foot.

__<s3> _ |lr(ss) —r(target)||

fi = ||r(target)|| N ||r(target)|| (2.12)
__<s1> _ |lr(sa) —r(target)|]

fe = |[r(target)|| ||r(target)|| (2.13)

(2.14)

2.8 Tasks

To confirm the results are not spurious or a special case for one particular task, multi-
ple tasks of varying difficulty are considered. The basic task is locomotion to a target.
Changing the target location was considered, but it is hard to ascertain what positions
for the target would be more difficult. The infant “tadpole” form with its tail directed to
the south and a target to the west have to turn before it could move toward the target, so
it may be more difficult for the infant form. However, the adult “frog” form is symmetric
with respect to targets placed in the cardinal directions, so there is no discernible differ-
ence in difficulty. Changing the position of the target does not provide a simple means of
constructing more difficult tasks.

Instead of changing the target location, varying the velocity of current v, is considered.
Each individual is affected similarly by the current-regardless of its morphology.® In task
1 the current assists the individual to the target. In task 2 there is no current. In task

3 the current pulls the individual laterally away from the target. In task 4 the current is

3This differs from Bongard’s work where the task was easier for the infant form due to its morphology.
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Task 1 Task 2 Task 3

target e target e target e
Ve = 0 Ve Ve
start ¢ start o start ¢

Figure 2.7: Tasks shown in an ascending order of difficulty.

directly against the target. Figure 2.7 shows a diagram of the tasks. The tasks are meant

to be in an ascending order of difficulty.*

2.9 Evolutionary Algorithm

The evolutionary algorithm used is described in detail in [4]. The algorithm is a variant
of the steady state Age-Layered Population Structure (ALPS) [7, 6]. The population
is divided into layers based on the age of the individuals. The bottom layer holds the
youngest individuals and is periodically reset with new genetic material. The top layer
holds the oldest individuals. By segregating individuals based on age, ALPS maintains
population diversity and avoids premature convergence to local optima[6].

Each individual has an age and each layer has an age limit. An individual whose age
is greater than this age limit is defined to be too old. It may dislodge another individual
j in the next layer if its fitness f; dominates f;°. If it cannot dislodge any individuals, it

is discarded.

a dominates b <= a; < b; Vi (2.15)

An individual is dominated if any other individual in its layer dominates it. In this

ALPS variant, only non-dominated individuals within the layer are allowed to reproduce.

4One could argue that the task 1 may in fact be more difficult because it may require two skills: go

and stop.
5Note: in this case lower values for fitness are considered better.
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Reproduction happens as follows: A copy of the parent is made. Each element of its
genome has a 0.05 chance of being reset to a random uniform value in the interval [0, 1].

No crossover operation is used.
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Chapter 3

Results and Discussion

A run can be described by three pieces of information: The morphological variation
{An, Bn, Ap, Bp, Ao, Bo}, the task {1, 2,3}, and whether it is lobotomised {0,1}. A trial
is usually comprised of 6 runs—one for each morphological variation—and it is described by
the task and lobotomised state. These are the typical values for a run:

All runs were performed on an Amazon High-CPU Extra Large Instance that has 8

virtual cores with 2.5 EC2 Compute Units each.

3.1 Results for Task 1

Figure 3.1 shows the results for task 1. Statistically significant differences were found.
However, the differences indicate that it takes longer for evolution to find a solution when
the morphology changes phylogenetically or ontogenetically. This may be a reasonable

expectation since one is asking for the optimisation procedure to effectively solve multiple

Name Value
Layer size 15
Population per layer 10
Reset frequency 1 reset /300 steps
Max time for evolution 20 minutes
Time per evaluation 10 simulated seconds
Target distance 0.25 m
Current speed 0.01 m/s

Table 3.1: Typical parameters used for the evolutionary algorithm
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problems in succession instead of one problem. One of the aims of this work was to produce
results similar to those found in [2], and attempt to discern clearer boundaries between
what kind of morphological change accelerate evolution and what kind do not. Still it may

be instructive to determine where all the evaluations were spent.

Median Evaluationsfor Task 1,
Fully Connected CTRNN

30000

25000 — AR ek
@ 20000?—
i) i 7 No morphological change
8 15000 Fokox m Phylogenetic change
™ [ .
] 10000 - @ Ontogenetic change

5000—

n p (o] n p
A B
Morphological Variation

Figure 3.1: This chart shows the median number of evaluations over 100 independent trials (100 x
6 runs) for each of the morphological variations on task 1 with a fully connected
controller. The bar represents the standard error. The stars indicate whether the
difference in median (e.g., Ap, Ao) is statistically significant compared to the control

(e.g., An) according to the Mann-Whitney U test.

Figure 3.2 shows the mean number of evaluations per phase for the same set of results
shown in Figure 3.1. Phase 1 and 2 both complete well before the only phase in An and
Bn, the baseline each are compared against. Phase 3, however, takes a majority of the
evaluations for most of the morphological variations. Why is that? Examining the most
extreme case Bp may be instructive.

Figure 2.5 shows that phase 3 of Bp changes both the tail /; and the feet [, essentially
swapping the values. Perhaps the transition from the tail being the main source of locomo-
tive power to the feet is the cause. It could be that altering both variables simultaneously
is not conducive to the kind of scaffolding that may be required to exhibit an acceleration
of evolution. This conjecture is supported by examining phase 3 of Ap which only alters
the foot length [y and does not require as many evaluations.

One further curiosity to note about Figure 3.2 is that phase 4 for Ao and Bo both
require a fair amount of evaluations for what looks like a comparatively small change
morphologically. For the Bo case phase 4 appears to take as long as Bn, which suggests that

the preceding phases have not accelerated evolution at all. In fact, performing a Mann—
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Median Evaluations by Phase for Task 1,
Fully Connected CTRNN

30000

25000
g 20000¢ m Phasel
B 0] m Phase2
T f m Phase3
W 10000f ] Phase4

5000 =

An Ap Ao Bn Bp Bo

Morphological Variation

Figure 3.2: This chart shows the mean number of evaluations per phase over 100 independent
trials (100 x 6 runs) for each of the morphological variations on task 1 with a fully

connected controller.

Whitney U test on the two sets of data reveals that they do not statistically differ: the
median evaluations for phase 1 of Bn and phase 4 of Bo are 6186.5 and 6468.5 (p = 0.74).
Therefore, the morphological variation Bo represents a case where the conditions assuredly

do not accelerate evolution.

Phase 4 of Bo may be instructive in trying to determine what conditions are necessary
to accelerate evolution. It suggests a good experiment to determine whether any acceler-
ation is happening: run each phase independent of the others with a random population
and compare median evaluations, e.g., phase 1 of Bn and phase 4 of Bo can be compared
directly in this way. The last phase of all the morphological variations are comparable in
this way. Ap and Ao statistically differ from An, and Bn differs from Bp according to the
Mann—Whitney U test.

Examining phase 4 of Ap and Bp in isolation demonstrates two cases where the pop-
ulations are primed to succeed by the preceding phases. Granted the preceding phases,
especially phase 3, have made those gains not worthwhile cumulatively, but they may be
instructive yet. One oddity is comparing Ap which only alters [ and Bp which alters both
Il and I; yet Bp takes less time than Ap (p = 8.1 x 1073), so the simultaneous changing

of variables need not cause automatic concern.
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3.2 Results for Task 2

Task 2 was run similarly to task 1 with the exception that fewer trails were conducted.
Because the magnitudes are so different between the control and the experimental group,

it does not require many trials to determine a statistical difference in the distributions.

Median Evaluations for Task 2,
Fully Connected CTRNN
30000
r skkosk
25000 o 5k
2 20000?—
§e] i 7 No morphological change
8 15000 m Phylogenetic change
© r .
i 10000 F @ Ontogenetic change
w000

n p 0 n p
A B
Morphological Variation
Figure 3.3: This chart shows the mean number of evaluations over 32 independent trials (32 *
6 runs) for each of the morphological variations on task 2 with a fully connected
controller. The bar represents the standard error. The stars indicate whether the
difference in mean between the experimental (e.g., Ap, Ao) is a statistically significant

compared to the control (e.g., An) according to a Mann—Whitney U test.

The results for task 2 do not look dramatically different from task 1. One gratifying
aspect is that task 2 does appear to be more difficult than task 1 as intended. The
median evaluations for An task 1 and 2 are 4562.5 and 6495; the distributions do differ
(Mann-Whitney U p = 0.0055 < 0.01).
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Median Evaluations by Phase for Task 2,
Fully Connected CTRNN

30000
25000
g 20000¢ m Phasel
B 0] m Phase2
T f m Phase3
W 10000f ] Phase4
5000

An Ap Ao Bn Bp Bo

Morphological Variation

Figure 3.4: This chart shows the mean number of evaluations per phase over 32 independent
trials (32 * 6 runs) for each of the morphological variations on task 1 with a fully

connected controller.

3.3 Results for Task 3

Task 3 was presumed to be the most difficult of the three tasks. It proved to be so.
Figure 3.5 shows the results. Most runs do not make it out of phase 1. However, a few
runs do reach phase two, namely Ap and Bp, which shows that the task was not utterly
impossible. The magnitude of the current v. ought to be reduced such that the task can

be more readily reached.

Median Evaluations by Phase for Task 3,
Fully Connected CTRNN

30000

25000f
m Phasel
: @ Phase2
@ Phase3
i [ Phase4
sooof

P1 P1 pz P3 p4 P1 P2 P3 P4 P Py Pz P3 P4 Py pz P3 Pa

An Ao Bn
Morphologlcal Varlatlon

Evaluations
5 0B
S 8
o o

=
o
5]
o

Figure 3.5: This chart shows the mean number of evaluations per phase over 20 independent
trials (20 * 6 runs) for each of the morphological variations on task 1 with a fully

connected controller.
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3.4 Follow Up Experiments and Results

No lobotomised runs were conducted since it was not required to determine whether evo-

lutionary acceleration happened on account of the controllers.

Bp
(e, 19

Py P2 Ps Ps
[0 ' mm———————
1 2 3 4
Bq

v ser NN AN/
> ’I‘/I\/|\/|\/ \

o

PL i P2 0 P . Pai P o PPy

Figure 3.6: This new morphological variation Bq is proposed to help determine why phase 3 of
Bp appears to do so poorly.

Because changing the tail and foot length at the same time may be why phase 3 of
Bp in task 1 does so poorly, a variation of it called Bq was created that only changes one
length at a time but is otherwise very similar. Bq is shown in Figure 3.6.

Figure 3.7 shows that even by only altering one part of the morphology at a time, the
spike in evaluations in phase 3 was not really dispatched. Phase 4 of Bq does show that
the increase in foot length—mnot the decrease in tail length—is responsible for the spike in

evaluations.

3.5 Conclusion

I have replicated the evolutionary algorithm in [3] and applied it to a new robot platform
and environment, attempting to ascertain what kinds of morphological change accelerate

evolution. I had hoped to setup my experiments to find a boundary where some experi-
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Mean Evaluations by Phase for Task 1

Comparing Bg and Bp
Evaluations

30000
25000?—
zoooof—
15000?—
1oooof—

5000

phase

Pt P2 Ps P4 Ps Ps P7 P P2 P3 Pa

Bq Bp

Ps Pe Pr

Figure 3.7: The new morphological variation Bq is compared with Bp. This chart shows the
mean number of evaluations over 20 independent trials (20 x 6 runs) for each of the

morphological variations on task 1 with a fully connected controller.

ments exhibited the acceleration and some did not. Perhaps, if I had time to look at each
case on a phase by phase basis there might be evidence of that. As it is now, I did not
find support using this new platform for the claim that morphological change accelerates
the evolution of robust behaviour compared to no morphological change. My hypothesis
that non-conservative morphological change (Bp, Bo) would not accelerate evolution is
supported by the findings. My hypothesis that conservative morphological change (Ap,
Ao) will accelerate evolution is not supported.

I would follow up on this work by exploring changing morphology phylogenetically
since it has a smaller search space than the ontogenetic space. There may very well be a
way to stage the morphological changes such that evolution is accelerated with this robot
platform. An automated search of that space may take some time, but the results may

provide further insights.
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Appendix A

Code

The code will be available in digital form at http://github.com/secelis/sussex-thesis.

A.1 Physical Model

The equations of motion were derived using AUTOLEV [9]. The source code is provided
below. Figure A.1 shows how the axes relate to the rigid bodies in the code.

d:

qr7 \éz
'/A\‘ " 4
€1 L
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Figure A.1: Configuration variables and axes used in “frog.al”

Listing A.1: frog.al

% frog.al

%

% Mathematical model of a frog in a simulated liquid environment.
%

% Implemented with Autolev
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%SetCompatible (AUTOLEV)

autorhs on
autoz off
body a,b,c,d,e, f

% central body (a), tail (b), feet clockwise (c——f)
point 0,jb,jc,jd,je,jf ,sr,sl

% origin and pin joint points for each body
newtonian n
variables ql’, q2’, q3’, q4’, g5, q6’, q7’, g8’

> oul’, u2’, u3’, ud’, ub’, u6’, u7’, ul’

motionvariables

constants r, 1, fl, oq4, ogb5, oq6, oq7, oq8, Tq4, Tqb5, Tq6, Tq7, Tq8

% radius, tail length, foot length, offset for q-i, Torque for q-_i
%constants ld, fld, rho, Cdcirc, Cdplate, TCdcirc, Acirc, TAcirc
% tail depth, foot depth, ? coefficients , Area

constants kTa, kTb, kTc, kFa, kFb, kFc, krb, krc, wvx, wvy

% Set mass and moments of inertia.

mass a = ma, b =mb, ¢ = mc, d = mc, e = mc, f = mc
inertia a_ao(n), 0, 0, Ia
inertia b_jb(a), 0, 0, Ib
inertia c_jc(a), 0, 0, Ic
inertia d_jd(a), 0, 0, Ic
inertia e_je(a), 0, 0, Ic
inertia f_jf(a), 0, 0, Ic

% Setup up the Reference Frames (RFs).
simprot (n,a,3,q3)
simprot(a,b,3,q4

simprot (a,c,3,q5

simprot (a,e,3,q7

(

( + )
( + )
simprot (a,d,3,q6 + 0q6)
( + )
simprot (a,f,3,q8 + )

% Set the motion variables.

ql’ = ul
q2’ = u2
q3’ = u3
qd’ = ud
q5’ = ub
q6’ = u6
q7’ = u7
q8’ = u8

% Set the positions of the pin joints with respect to body A.
P_o,ao> = ql * nl> 4+ q2 % n2>

P_ao_jb> = r * (—a2>)

P_ao_-jc> = r % unitvec( al> — a2>)

P_ao_jd> = r x unitvec( al> + a2>)
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P_ao_je> = r x unitvec(—al> + a2>)
P_ao_jf>

Il
—
*

unitvec(—al> — a2>)
(—al>)
P_ao_sr> =1 x al>

P_ao_sl>

Il
—
*

% Set the positions of the pin joints with respect to the bodies other than A.
P_jb_.bo> = —-1/2 =« b2>

P_jc.co> = —f1/2 % c2>
64 P_jd.do> = —fl/2 % d2>
P_je_eo> = —f1/2 % e2>
P_jf_fo> = —f1/2 * 2>

% Set the angular velocities to their respective motion variables.
w_a_-n> = u3 * a3>
w_b_a> = ud * a3>
w_c.a> = ud * a3>
w_d_.a> = ub * a3>
73 w_e_a> = u7 * a3>
w_f_a> = u8 * a3>

% Fix the pin joints in their respective RFs.
v_jb_a> = 0>
v_jb_b> = 0>
v_jc_a> = 0>
v_jd_a> = 0>
v_je_a> = 0>
82 wv_jfa> = 0>
v_jc_c> = 0>
v_jd_d> = 0>
v_je_e> = 0>
v_jf_f> = 0>

% Use the 2 point thereom to define velocity of each limb with respect to A.
v2pts(a,b,jb,bo)
v2pts(a,c,jc,co)
91 v2pts(a,d,jd,do)
v2pts(a,e,je ,eo0)
)

v2pts(a,f,jf,fo

v_ao.n> = dt(p-o-ao>, n)
v2pts(n,a,ao,jb)

% Define the translational velocities.
v_bo_.n> = dt(p-o_bo>, n)
100 v_co.n> = dt(p-o-co>, n

v_eo_-n> = dt

(

( )
v_do.n> = dt(p-o-do>, n)

(p-o-eo>, n)

( )

v_fo.n> = dt(p-o_-fo>, n
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% Define the translational accelerations.
a_ao_-n> = dt
a_bo_n> = dt
a_co_n> = dt
a_do.n> = d
a_eo_n> = d

a_fo.n> = dt

% The units for torque_a> should be newton—meters (m/s)"2 kg.

% kTa = —rho/2 % TCdcirc * TAcirc

torque_a> = kTa * w_a_n> * mag(w_a_n>
torque_b> = kTb * w_b_a> % mag(w_b_a>
torque_c> = kTc * w_c_a> % mag(w_c_a>

torque_e> = kTc % w_e_a> % mag(w-e_a>

)
( )

( )

torque_-d> = kTc * w.d_a> x mag(w_d_a>)
( )

torque_f> = kTc * w_f_a> * mag(w_f_a>)
torque (a/b, Tq4 * n3>)
torque (a/c, Tqgb * n3>)
torque(a/ Tq6 * n3>)
torque (a/e, Tq7 * n3>)
( )

torque (a/f, Tq8 % n3>

% velocity of the water current

wv> = wvx * nl> + wvy *x n2>

% Set the drag force for each body.
% wikipedia drag force

% F.D = \frac{1}{2} \rho v"2 C.d A
% kFa = —rho/2 % Cdcirc =* Acirc

force_ao> = kFa x (v_ao_n> — wv>) % mag(v_ao_n> — wv>)
krb =

krc = 0

Towv> = 0>

% kFb = —rho/2 * Cdplate = 1d

force.bo> = kFb * 1 % (v_bo_n> — wv>) *x abs(dot(bl>, (v_bo_n>
%force_bo> = kFb % 1 % (v_bo_n> — wv>) % abs(dot(bl>, (v_bo_n>

% kFc = —rho/2 % Cdplate = fld

force_.co> = kFc * fl % (v_co.n> — wv>) % abs(dot(cl>, (v_co.n>
force_.do> = kFc¢ * fl % (v_do.n> — wv>) x abs(dot(dl>, (v_do_n>
force_.eo> = kFc * fl % (v_eo.n> — wv>) % abs(dot(el>, (v_eo.n>
force_fo> = kFc * fl x (v_foon> — wv>) % abs(dot(fl>, (v_-fo_n>

i_b_bo>> = inertia(bo, b)
i_c_.co>> = inertia(co, c¢)
i_d_do>> = inertia(do, d)
i_e_eo>> = inertia(eo, e)
i_f_fo>> = inertia(fo, f)
Y%eqns = fr () + frstar ()
%eqns

fr() + frstar ()

+

+ o+ + o+

krb
krb

krec
krec
krc
krc

SIGN (u4) * mag(v
mag(v_bo_n >))

mag(v_co_n >))

(

mag(v_do_n>))

mag(v_eo_n >))
(

mag(v_fo_n >))
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Name | Value Description
r 0.025 m radius of central body
Ilmax | 0.06 m maximum length of tail and feet
ma 0.025 kg mass of central body
mb 0.00195 kg mass of each tail and foot
Tmax | 0.001797 N m maximum torque for tail and feet
kTa -0.0001 coefficient for torque drag for central body
kTb —5.79837 x 1076 | coefficient for torque drag for tail and feet
h 0.01 RK4 step size

Table A.1: caption

A.1.1 Equations of Motion

Below are the equations of motion produced by AUTOLEV. The last eight lines are the

actual equations of motion that form a linear system in terms of u},u,...

,u8'.

The

preceding lines describe the computations necessary to determine the coefficients of the

linear system. Symbolically the last eight lines look like Equation A.1

0=b+Zu

A.1.2 Parameters for Physical Simulation

Z1
72
73
74
75
76
77
78
79
710
Z11
712
713
714
715
716

COS
S

IN (ogq5+95
= COS
SIN (0q6+q6
COS(0q7+q7
SIN (0q7+q7)
COS(0q8+4q8)
SIN (0q8+q8)

(a3
(a3
(
(
(
(
(
(

Z1%73 — 72x74
—Z1x724 — 72x73
Z1x74 + 72x73
Z1x7Z5 — Z2%76

Listing A.2: frog_eqns.m

(A1)
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Z17 = —Z1%x726 — Z2+7Z5
718 = 7Z1%x76 + Z2x75
719 = Z1+77 — 7Z2%78
720 = —Z1%78 — Z2x77
721 = 7178 + Z2+7Z7
722 = 7179 — Z2x710
723 = —Z1x7Z10 — Z2xZ9
724 = 7Z1%x710 + Z2%Z7Z9
725 = Z1xZ11 — 7Z2x712
726 = —Z1x712 — 7Z2x7Z11
727 = Z1x7Z12 + 7Z2x711
728 = rxud

729 = 1x(u34u4)

730 = u3x728

731 = (u3+4u4d)=Z29

732 = flx(u34ub)

733 = (u3+4ub)=x7Z32

734 = flx(u34u6)

735 = (u34u6)=7Z34

736 = fl*(ud4u7)

737 = (u34u7)=Z36

738 = flx(u34u8)

7239 = (u3+u8)=Z38

740 = ABS(u3)

741 = kTaxu3*Z40

742 = ABS(u4)

743 = kTbxud*Z42

Z44 = ABS(ub)

745 = kTcxub*7Z44

746 = ABS(u6)

747 = kTcxub%7Z46

748 = ABS(u7)

749 = kTcxu7%7Z48

Z50 = ABS(u8)

751 = kTc*xu8x%7Z50

752 = Z41 — Tq4

753 = 752 — Tq5

754 = 753 — Tq6

755 = 754 — Tq7

756 = 755 — Tq8

757 = ul — wvx

758 = u2 — wvy

7259 = kFax(wvx—ul)*(Z57°2+758"°2)"0.5
760 = kFax*(wvy—u2)*(Z57°2+758"2)°0.5
761 = ABS(Z13*ul4+Z15xu2+r+Z3*u3+0.5%1%(u3+ud)+0.5xkrb*SIGN (ud ) (4*ul"24+4*u2"2+7229"2+4%728"2+4x7
762 = kFbx*lxr

763 = 7Z62%xu3*Z61

764 = kFbx1"2

765 = Z64*(u34ud)x7Z61
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766 = kFbxl
767 = Z66%xul*Z61
768 = Z66xu2x7Z61
7269 = ABS(Z16*ul+Z18+u2+0.7071068*r*Z5xu3+0.7071068*r*Z6+u3+0.5x f1 x(u34ub))
770 = flxkFcxr
771 = Z70%xu3*7Z69
772 = kFcxfl"2
773 = Z72%(u3+u5)*Z69
774 = flxkFc
775 = ZT4xul*7Z69
776 = ZT4%xu2%769
277 = ABS(Z19%ul4+Z21%u2+0.7071068*rxZ8+u3+0.5% f1 x(u34+u6) —0.7071068*r*xZ7*u3)
778 = ZT0xu3*Z77
279 = Z72%(u3+ub)*Z77
780 = ZT4xul*Z77
781 = ZT4xu2*7Z77
782 = ABS(Z22xul4+Z24%u2+40.5% fl *(u3+u7) —0.7071068*r*Z9+u3 —0.7071068r*Z10%u3)
783 = Z70%xu3*7Z82
784 = Z72x(u34u7)*7Z82
785 = ZT4xul*7Z82
786 = ZT4xu2x%782
787 = ABS(Z25%ul+Z27+u2+0.7071068*r*Z11%xu3+0.5% fl *(u3+u8) —0.7071068*r*Z12*u3)
788 = ZT0xu3*7Z87
789 = Z72%(u3+u8)*Z87
790 = ZT74xul*7Z87
791 = ZT74%u2*7Z87
792 = mbx1"2
793 = mcxfl "2
(326) eqns = fr() + frstar ()
794 = 767 + Z75 + Z80 + Z85 + Z90 + Z1%x7Z63 + 0.5%Z13%Z65 + 0.5%xZ16%Z73 + 0.5%xZ19%Z79 + 0.5%Z22x
795 = 768 + Z76 + Z81 + Z86 + Z91 + Z2x7Z63 + 0.5%Z15+x7Z65 + 0.5%xZ18%Z73 + 0.5%xZ21%7Z79 + 0.5%Z24x
796 = Tqd + Tq5 + Tqb + Tq7 + Tq8
797 = 796 + Z43 + Z45 + 74T + 749 + Z51 + 756 + r*7Z63 + 0.25% f1+Z73 + 0.25% f1xZ79 + 0.25x% f1+784
798 = Tq4d + Z43 + 0.25% 1% (Z65+2%Z3%Z634+2%Z13%Z67+2+%Z15%Z68)
799 = Tqb + Z45 + 0.25% {1 %(Z273+1.414214%Z5%Z71+1.414214%Z6%xZ71+2+%Z16%Z75+2+Z18%Z76)
7100 = Tq6 + Z47 — 0.25x% {1 %(1.414214*%ZT*Z78—279—2+Z19%Z80—2+721%781 —1.414214%Z8*Z78)
7101 = Tq7 + Z49 — 0.25x f1%(1.414214%7Z9%7Z83+1.414214+7Z10+7Z83—784—2%722+785—2%7Z24x786)
7102 = Tq8 + Z51 — 0.25x {1 %(1.414214%7Z12+7Z88—789—2+7Z25%x790—2+7Z27x7Z91 —1.414214%7Z11x7Z88)
7103 = Ib*u3 + Ibxud — 0.25%7Z92%xud

7104 = Z92xu3

72105 =

72106 = Z93%u3

7107 =
7108 =
7109 =
7110 =

Z111 = fl=*mc

7112 =

7113 = lxmb

Ic*u3 4+ Ic*xub — 0.25%Z93*ub

Icxu3 4+ Icxub — 0.25%xZ93*xub
Ic*u3 4+ Icxu7 — 0.25%xZ93%u7
Icxu3 + Ic*xu8 — 0.25%Z93*u8
ma + mb + 4xmc

0.5%Z111%7Z16 + 0.5%Z111%Z19 + 0.5%Z111%7Z22 + 0.5%Z111%Z25 + 0.5+mbx(1%xZ13+2xr*Z1)
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7114 = Z113%7Z13

7115 = Z111%Z16

7116 = Z111%7Z19

Z117 = Z111x722

7118 = Z111x725

7119 = 0.5%mcxZ17%Z33 + 0.5%xmcxZ20%Z35 + 0.5%xmc*xZ23+Z37 + 0.5%xmcxZ26%Z39 — 0.5%mbx*(2+Z2+Z30—7Z14
7120 = 0.5%Z111%Z18 + 0.5%Z111%7Z21 + 0.5%Z111%7Z24 + 0.5%Z111%Z27 + 0.5+mbx(1%xZ154+2%r*Z2)

7121 = Z113%Z15

7122 = Z111%718

7123 = Z111x7Z21

7124 = Z111x724

7125 = Z111x7227

7126 = 0.5%mc*Z16%Z33 + 0.5%xmcxZ19%Z35 + 0.5%xmc*xZ22+Z37 + 0.5%mcxZ25%Z39 + 0.5%xmbx*(Z13%Z31+2%Z1
7127 = la + Ib + 4xIc

7128 = flsmc*r

7129 = mcxr

7130 = 172 + 4xr"2

7131 = lxr

7132 = Z127 + 0.7071068%Z128+(Z11-7212) + 0.25+mb=(Z1304+4%Z131%Z3) + 0.7071068%Z129%(5.656854 % r+
7133 = Ib + 0.25%Z113%(14+2%r*Z3) — 0.25%792

7134 = Ic + 0.25%Z111%(fl14+1.414214%rxZ5+1.414214%r*Z6) — 0.25%7Z93

7135 = Ic — 0.25%793

7136 = Z135 — 0.25%xZ111%(1.414214xr+Z7—f1 —1.414214%1*Z8)

7137 = Ic + 0.25%Z111%(fl —1.414214%r+Z9—1.414214xrxZ10) — 0.25%7Z93

7138 = Ic 4+ 0.25%Z111%(f14+1.414214%rxZ11—1.414214xr+Z12) — 0.25%Z93

7139 = 0.5%mb*Z4%(1%xZ30—r+Z31) + 0.3535534smcx*( f1%Z6%Z30+r*Z5+%Z33—f1%Z5+%Z30—r*Z6%Z33) + 0.35355
7140 = Ib + 0.25xmbx1"2 — 0.25%Z92

7141 = Z113%Z4%7Z30

7142 = Ic + 0.25xmexfl1"2 — 0.25%793

7143 = Z111%(Z5-726)*7Z30

7144 = Z111%(Z7+7Z8)*7Z30

7145 = Z111%(Z9-7Z10)*Z30

7146 = Z111%(Z11+Z12)%Z30

0 = 7294 — Z119 — Z110%ul’ — Z112%u3’ — 0.5%Z114%ud’ — 0.5%Z115%xub’ — 0.5%Z116*%xu6’ — 0.5%xZ117*u7
0 = 7295 — Z126 — Z110%u2’ — Z120%u3’ — 0.5%xZ121%xud’ — 0.5%Z122%xub’ — 0.5%Z123%ub6’ — 0.5%xZ124%u7
0 = 797 — Z139 — Z112xul’ — Z120%u2’ — Z132xu3’ — Z133xud’ — Z134xud’ — Z136%ub’ — Z137*u7’ — 7
0 =798 — 0.5%7Z141 — Z140%u4’ — Z133%u3’ — 0.5%xZ114*ul’ — 0.5%Z121%u2’

0 = Z99 4+ 0.3535534% 72143 — Z142%ub’ — Z134%*u3’ — 0.5%xZ115%xul’ — 0.5%Z122%u2’

0 = Z100 + 0.3535534%7Z144 — Z142xu6’ — Z136*%u3’ — 0.5%xZ116*ul’ — 0.5%Z123%u2’

0 = Z101 — 0.3535534% 72145 — Z142xu7’ — Z137+u3’ — 0.5%Z117xul’ — 0.5%Z124%u2’

0 = Z102 — 0.3535534%7Z146 — Z142%u8’ — Z138%u3’ — 0.5%xZ118xul’ — 0.5%xZ125%u2’

A.1.3 Numerical Simulation

Listing A.3: rkd.c

int rk4(double y[], double dydx[], const int n, double x, double h, double yout[], int (xderivs

/* Given wvalues for n wvariables y[1..n] and their derivatives
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* dydz[1..n] known at x, use the RKj method to advance the solution
* over an interval h and return the incremented variables as
7 x yout[1..n]. x/
{
int i, err;

double ak2[n],ak3[n],ak4[n],ytemp[n];

for (i=0; i<n; i++) //First step.
ytemp [i]=y[i]+ hxdydx[i]; // akl[i] = h dydz[i]
err = (xderivs)(x+0.5+h,ytemp,ak2,context);
if (err) return err;
16 for (i=0;i<n;i++) //Second step .
ytemp [i]=y[i]+h=*(0.5 *ak2[i]);
err = (xderivs)(x+0.5xh,ytemp,ak3, context );
if (err) return err;
for (i=0; i<n; i++) //Third step.
ytemp [i]=y [i]+h*(ak3[i]);
err = (xderivs)(x+h,ytemp,akd, context);
if (err) return err;
for (i=0; i<n; i++4) //Accumulate increments with proper weights.
25 yout [i]=y[i]+(h/6.)*(dydx[i] + 2.x ak2[i] + 2.xak3[i]4+ak4[i]);
//Estimate error as difference between fourth and fifth order methods.

return O0;

A.1.4 CTRNN

Listing A.4: frog_eqns.m

(* ::Package:: x)

(% ::Title:: %)
(* CTRNN+x )

(* Requirements to specify a CTRNN:
8 W (nzn) matriz
theta (nzl) vector
input (t —> nzl) function

time comnstant (nzl) vector x)

sigma[x_] = 1/(1 + E"(—x))

17  makeSymbolicCTRNN [n_]:=
Module[{range, Ws, thetas, inputs, Ts},
Ws = Array (W, {n,n}];
thetas =Array|[theta, {n}];
inputs= Map[Function[{a},input[a][#]&],Range[n]]; (* has constant inputs x*)
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Ts = Array[tc, {n}];
{Ws, thetas ,inputs, Ts}]

26 makeRandomCTRNN [n_]| :=

Module[{range, W, theta, input, Ts},
range = {—1, 1};
W = RandomReal [range, {n,n}];
theta = RandomReal[range, {n}];
input= Map[Function [{t}, #]&,RandomReal[range, {n}]]; (* has constant inputs x*)
Ts = RandomReal[10"range, {n}];
{W, theta ,input, Ts}]

35
makeRandomCTRNNLinSensor [n-, sensorCount_] :=
Module[{ctrnn, range, sensorMat},
range = {—1,1};
sensorMat = RandomReal[range, {n, sensorCount }]|;
ctrnn = makeRandomCTRNN [n];
(xctrnn [[3]] = makeLinSensorInputs[n,ctran [[8]]]; *)

ctrnn " Join " {sensorMat }]

44
makeSymbolicCTRNNLinSensor [n_, sensorCount_] :=
Module[{ ctrnn, sensorMat,s},
ctrnn = makeSymbolicCTRNN [n];
sensorMat = Array|[nij ,{nodeCountCTRNN |[ctrnn], sensorCount }];
(xsensorMat = sensorMat /. substituteRules[Flatten [sensorMat], sc];*)
ctrnn = ctrnn~Join {sensorMat };
ctrnn [[3]] = makeLinSensorInputs [nodeCountCTRNN[ctrnn],

Array[sensor , sensorCount]];

53 ctrnn

makeZeroCTRNNLinSensor [n_, sensorCount_] :=
Module[{ctrnn, range, sensorMat },
range = {—1,1};
sensorMat = 0 RandomReal[range, {n, sensorCount }]|;
ctrnn = makeZeroCTRNN [n];
62 ctrnn “Join " {sensorMat }]

makeZeroCTRNN [n_]| :=
Module[{ ctrnn },
ctrnn= makeSymbolicCTRNN [n];
ctrnn = 0. ctrnn;
ctrnn [[4]] Table[1., {n}];
ctrnn [[3]] = Table[0.&, {n}];
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71 ctrnn |

nodeCountCTRNN [ctrnn_] :=Length[First [ctrnn]]

Options [equsForCTRNN] = {otherEqns —> {}};

80 eqnsForCTRNN|[ctrnn_List ,state_List , OptionsPattern[]] :=
Module[{W, theta ,input, eqns, ICs, sols, Tinv, y, dy, n, gain},
n = nodeCountCTRNN [ctrnn |;
y = Table[ys[i][0], {i, n}];
ICs = MapThread[#1 =— #2&, {y, state }];
eqnsForCTRNN [ctrnn , otherEqns —> ICs Join~ OptionValue [otherEqns]]]

eqnsForCTRNN [ ctrnn_List , OptionsPattern []] :=

89 Module[{W, theta ,input, Ts, eqns, ICs, sols, Tinv, y, dy, n, gain},
{W, theta ,input ,Ts} = Take[ctrnn, 4];
gain =1;
n =nodeCountCTRNN [ctrnn |;
y = Table[ys[i][t], {i, n}];
dy = Table[ys[i] [t], {i,n}];
(* Tinv = DiagonalMatriz [Ts —1];%)
Tinv = DiagonalMatrix |[Ts];
eqns = MapThread[#1 =— #2&,

98 {dy, Tinv . (W . sigma[y + theta] —y + gain Map[#[t]&,input]) }];
{eqns~Join~ OptionValue [otherEqns], y}]

equsForCTRNN [ ctrnn_List , OptionsPattern []] :=
Module[{W, theta ,input, Ts, eqns, ICs, sols, Tinv, y, dy, n, gain, bound},
{W, theta ,input ,Ts} = Take[ctrnn, 4];
gain =1;
n =nodeCountCTRNN [ctrnn |;
107 y = Table[ys[i][t], {i, n}];
dy = Table[ys[i] [t], {i,n}];
Tinv = DiagonalMatrix|[Ts];
bound = IdentityMatrix[n];
bound = DiagonalMatrix [Map[1 — Abs|[boundaries[#, {—2,2}]]&, y]];
equs = MapThread[#1 =— #2&, {dy, Tinv . (—y + bound . ( W . sigma[y + theta] + gain
(x+ try to keep it bounded x)
(x— 100 y Map[Abs[boundaries[#, {—2,2}]]&}, y]*)
H
116 (xsols = NDSolve[{eqns, ICs},y, {t,0, 5}];
solsx)

{eqns~Join~ OptionValue [otherEqns], y}]
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substituteRules [vars_,

Module[{},

vo] =

Quiet [MapThread[#1 —> #2&, {vars,Table[v[[i]],

{i, Length[vars]}]|}],
{Part :: partd }]]

125
(*x sensors [Real —> Real]
time to sensor wvalue %)
makeLinSensorInputs [nodeCount_, sensors_] :=
Module[{mat, s, inputs, sensors2},
mat = Array|[nij,{nodeCount, Length[sensors]}]|;
sensors2 = Map[Function[{a}, a[#]], sensors];
inputs = Map[Function[{a},Function|[Evaluate[a]]] , mat sensors2 |;
134 (xinputs /. substituteRules[Flatten [mat], sc]x)
inputs
J
(% sensors [Real —> Real]
time to sensor value x)
makeLinSensorInputs[ctrnn_List , sensors_] :=
Module[{mat, s, inputs, sensors2, nodeCount},
143 nodeCount = nodeCountCTRNN |[ctrnn |;
mat ctrnn [[5]];
sensors2 = Map[Function[{a}, a[#]], sensors];
Map|Function[{a},Function[Evaluate[a]]] , mat sensors?2 |

J

solveCTRNN [ctrnn_,

state_]

Module[{ eqns, vars},
152

{eqns, vars} = equnsForCTRNN|[ctrnn,

state];
NDSolve [ eqns ,

vars, {t, 0, 100} (x, Method —> ”EzplicitEuler”,StartingStepSize —>0.02

makeRandomCTRNNState [n_] := RandomReal[.1 {—-1,1}, {n}]

makeZeroCTRNNState[n_] := Table[0, {n}]

161

onesForTimeCs[ctrnnArg._ |

Module[{n, ctrnn},

ctrnn

ctrnnArg;

n = nodeCountCTRNN [ctrnn |;
ctrnn [[4]] = Table[l, {n}];

ctrnn |
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A.2 Evolutionary Algorithm

Listing A.5: alps-like.c

/% alps—like.c x/

#include <stdlib .h>
#include <stdio.h>
#include <math.h>
#include <float .h>
#include <strings.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <assert.h>
#include <stdarg.h>
#include <sys/stat.h>

#include ”run—simulation.h”
#include ”alps—like .h”
#include " pareto_front.h”
#include 7 alps_frog.h”

#define rand drand48

#define MUTPROB 0.05 // mutation probability
#define MAX OPT_STEPS 100000 // max optimisation steps
//#define LAYER COUNT 15

#define LAYER COUNT 10

#define POPPERLAYER 10

#define POP (LAYER.COUNT * POP_PER.LAYER)
#define MAXLAYER (LAYER.COUNT — 1)

#define BAD_FITNESS 666.0

#define RESET FREQ (POP * 2)

#define DISPLAY FREQ 300
//#define MAXSECONDS (20 x 60) // 20 minutes mazimum.
#define MAX SECONDS (40 = 60) // 20 minutes mazimum.

#define LAYER.OF_INDIV (i) ((i) / POPPERLAYER)

/% INDEX = Indez of individual %/

/* LINDEX = Layer Index (layer, indez of individual within layer) */
#define FITNESSINDEX (i) ((i) * FITNESS.COUNT)
#define LAYERBEGINS(1) (POP_PERLLAYER * (1))
#define INDIV.LINDEX (1, 1i) (LAYERBEGINS(1) + (li))
#define FITNESS_LINDEX(1, 1i) (INDIV.LINDEX(1, 1i) % FITNESS.COUNT)

double genes [POP][GENE.COUNT]; // Genotypes of the population.
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55

64

73

82

91

int ages [POP];
double fitness_matrix [POP x FITNESS_.COUNT];
int pareto_front [POP];
int t; /* optimisation step or time x/
int max_age [ /*xLAYER.COUNT+/] = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987, /x1597, 2584, 4181, 6765, 10946%/};
/* The mazimum possible age is a-mazx = opt_steps/POP.
The evaluation rate is e.r = ~21 evals/second.

maz_evals = e_r * MAXSECONDS

a-mazr "= maz_evals/POP.
*/
int goal_indiv;
int phase;

int run_-type = STANDARDRUN;

long random_seed ;
int eval_succ_count = 0;
int eval_fail_count = 0;

time_t begin;

FILE x+mfile;

FILE =«table;

FILE xscript;

double goal_fitness = 0.5;

int quiet ;

double mut_prob = MUT_PROB;

int reset_freq = RESET_FREQ;
int alps_status = ALPS_SUCC;
// erxperiment parameters

char xexp_name;
int task_index;
int lobotomise ;
int fitness_type;
int phase_count;

char xsave_prefix;

int mprintf(int add_prefix, const char *fmt, ...);

long elapsed_seconds ();

void init_population () {
int i;
for (i = 0; i < POP; i++) {
init_gene (genes[i]);

ages[i] = i/POP; // or zero

void init_gene (double xgene) {
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int i;

for (i = 0; i < GENE.COUNT; i++)
gene[i] = rand (); // [0, 1)

//gene[i] = rand() + 0.5; // [0, 1)

void mutate(double xgene) {
int i;
for(i = 0; i < GENECOUNT; i++)
if (rand() < mut_prob)

gene[i] = rand ();

void copy(double xsrc, double xdest) {
memcpy (dest , src, sizeof(double) % GENE.COUNT);

int evaluate (double *gene, double *fitness)
{
int i, err;
err = evaluate_frog(fitness , gene, exp-name, phase, task_index,

lobotomise , fitness_type);

if (err) {
for (i = 0; i < FITNESS.COUNT; i++)
fitness [i] = BAD_FITNESS;

eval_fail_count++;
} else {

eval_succ_count++;

}

return err;

/+* Does a dominate b? Return true iff f(a)_-i < f(b)_i for all i.x/
int is_dominated (double *fitness_a , double xfitness_b)
{
int i;
for (i = 0; i < FITNESS.COUNT; i++) {
if (fitness_a[i] >= fitness_b[i])
return 0;

}

return 1;

V&
Returns ¢ >= 0 where i is the index of the gene that it dislodged
itself to. 4 < 0 indicates it did not dislodge any gene.

*/

int try-dislodge (double xattempter, double xfitness , int age, int into_-layer)

{
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int i, k = into_layer;
145 if (k > MAXLAYER) {
// Sorry. No layer above to dislodge omeself to.
return -—1;
}
// start_search helps distribute the dislodge search evenly.
int start_search = rand() * POPPERLAYER;
for (i = 0; i < POPPERLAYER; i++) {
int li = (start_search + i) % POPPERLAYER;
int pi = INDIV.LINDEX(k, 1i);
154 double *fitness_b = fitness_matrix + FITNESS_.LINDEX(k, 1i);
if (is.dominated(fitness, fitness_b)
|| ages[pi] > max-age[k]) {
// New genome dominates current ome, or the current one is too old.
try-dislodge (genes[pi],
fitness_b ,
ages[pi],
k + 1);

163 copy (attempter, genes|[pi]);
memcpy ( fitness_b , fitness , sizeof(double) x FITNESS.COUNT);
ages [pi] = age;

return pi;

return —2;

172 void print_fitness (double xfitness) {
int i;
for (i = 0; i < FITNESS.COUNT; i++)
printf (?%f.", fitness[i]);
printf(”\n”);

int is_goal_fitness (double «fitness) {
int i;
181 for (i = 0; i < FITNESS.COUNT; i++) {
if (!(fitness[i] < goal_fitness))
J/if (!(fitness[i] < —5.0))
return 0;

}

return 1;

void start_phase(int phase) {
190 if (! quiet)

printf(”alps—like:_Starting._phase_-%d_on_step _-%d.\n”, phase, t);
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void add_to_script (char xfilename, int phase, double xfitness) {

int i;

fprintf(script, "frog_eval %s %s %d %d %d %d;. ",
filename , exp_-name, phase, task_index + 1, lobotomise,
199 fitness_type);
fprintf(script, ”echo_recorded._fitness:.”);
for (i = 0; i < FITNESS.COUNT; i++)
fprintf(script, "%f.”, fitness[i]);

fprintf(script, ”;.echo\n”);

char *save_gene_for_phase_and_front (int pi /* population index */, const char kxsave_prefix ,

208 int phase, int front_index)

static char gene_save_name [255];

double xgene = genes|[pi];

double xfitness = fitness_matrix + FITNESSINDEX(pi);

sprintf(gene_save_name , ”p%d—{%dgene.bin” , phase, front_index);

add_to_script (gene_save_name , phase, fitness);

sprintf(gene_save_name, "%s/pid—{%dgene.bin”, save_prefix , phase, front_index);

mprintf (1, ”individOnFront [{phase_.—>.%d, .frontIndex .—>.%d}].—>_\n”, phase, front_index + 1);

217

assert (FITNESS.COUNT = 2);

mprintf (1, "\t{fitness —>_{%lf , %lf},_age.—>%d, _layer .—>_%d, _meetsGoal .—>_%s , _geneFilename -
fitness [0], fitness[1], ages[pi], LAYER.OF.INDIV(pi), is_goal_fitness (fitness) 7 ”Tru

gene_save_name );

#ifdef PRINT_.GENE_CHAR
mprintf (1, 7 ,_gene_—>_{ %1f” , gene[0]);
int i;
226 for (i = 1; i < GENE.COUNT; i++)
mprintf (0, 7 ,-%lf”, gene[i]);
mprintf (0, "}.");
Hendif
mprintf (0, "}\n”);

write_array (gene_save_name , GENE.COUNT, gene);

return gene_save_name;
235
void end_phase(int phase) {
int i, fi, full_front [POP], age.max;

fprintf(table, "%d % _%d\n”, (alps_status = ALPS.FAIL ? —1 : 1) % phase, eval_fail_count , ex

pareto_front_rowmajor (full_front , fitness_matrix , POP, FITNESS.COUNT);
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age-max = 0;
for (i = fi = 0; i < POP; i++) {
244 age_max = fmax(age.max, ages[i]);

if (full_front[i]
/%66 is_goal_fitness (fitness_matriz + FITNESS.INDEX(i))x/) {

save_gene_for_phase_and_front (i, save_prefix, phase, ++fi);

}

mprintf (1, ”phaseEnd_—>_{phase_—>_%d, _ageMax_.—>_%d, _evalFailedCount _—>._%d, _evalSuccCount .—>_%

253
int mprintf(int add_prefix, const char *fmt, ...)
{
va_list ap;
int len;
if (mfile) {
va_start (ap, fmt);
len = viprintf(mfile, fmt, ap);
va_end (ap);
262 }
if (! quiet) {
char buf[512];
if (add_prefix) {
sprintf(buf, ”:m: %s”, fmt);
} else {
sprintf(buf, "%s”, fmt);
}
271 va_start (ap, fmt);
vprintf(buf, ap);
va_end (ap);
}
return len;
}
long elapsed_seconds () {
time_t now = time (NULL);
280 return now — begin;

int run_alps(int xsteps)
{
int i,j,k,p;
double temp_fitness [FITNESS_.COUNT];
double temp_gene [GENE.COUNT];
int pareto_front [POP];

289 int pareto_count;
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begin = time (NULL);
init_population (); // Initialise population.
t = 0;

goal_indiv = —1;

mprintf (1, ”preamble_—>_{expName_—>_%s , _phaseCount_—>_%d, -lobotomise _—>.%s, task_—>.%d, _-\n”,
mprintf (1, ”\ttmax.—>_%.21f , _fitnessType _—>_%d, -runType_.—>_%d , -randomSeed .—>_%ld _}\n” , TIMEM

298
mprintf (1, ”alpsParams.—>_{_layerCount._—>_%d, _popPerLayer.—>.%d, .”
” popCount .—>.%d, .mutProbability .—>_.%.3f , _-maxSeconds_.—>_%d._}\n" ,
LAYER.COUNT, POP_PERLAYER, POP, mut_prob, MAXSECONDS);
fflush (stdout);
for (p = 0, phase = 1;
p < phase_count && elapsed_seconds () < MAXSECONDS;
p++, phase = p + 1) {
307
if (p != 0) end_phase(p);
start_phase (phase);
for (i = 0; i < POP; i++) {
// Evaluate every gene.
evaluate (genes[i], fitness_matrix + FITNESSIINDEX(i));
}
int met_goal = 0;
for (j = 0; j <POP; j++) {
316 if (is_goal_fitness(fitness_matrix + FITNESSINDEX(j))) {
met_goal = 1;
goal_indiv = j;
}
}
if (met_goal)
continue;
for (; t < MAX.OPTSTEPS && elapsed_seconds () < MAXSECONDS; t++) {
325 // Evaluate the pareto front for each layer.
for (k = 0; k < LAYERCOUNT; k++)
pareto_front_rowmajor(pareto_front + k * POP_PERLAYER,
fitness_matrix
+ k * FITNESS_.COUNT x POP_PER_LAYER,
POPPERLAYER,
FITNESS_.COUNT ) ;
// Grab a non—dominated individual.
334 int a;

// O(n) single pass to count and grab a random individual
// that’s on the pareto front.
pareto_count=0;
for (i = 0; i < POP; i++)
if (pareto_front[i] && (rand() < 1./(double)++pareto_count))
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a = 1i;

k = LAYER.OF_INDIV (a);

343 if (t % DISPLAYFREQ =— 0) {
int n = FITNESSINDEX (a);
if (! quiet)
printf (7 t.=_%5d, -pi_-=_%3d, —a.=_%2d, _.k_.=_-%2d , .N(PF) .=_%2d, _f (a) =_{%f , %f},.”
Vefail .=_%3d, -esucc_=_-%5d, _secs =_-%41d\n”, t, a, ages[a], k,
pareto_count , fitness_matrix[n], fitness_matrix[n + 1],

eval_fail_count , eval_succ_count, elapsed_seconds());

fflush (stdout);
352 }

if (t % reset_freq = 0) {
// Reset the bottom layer.
for (i = 0; i < POPPERLAYER; i++) {
// Try to dislogde in the layer above if it’s in the pareto front.
if (pareto_front[i])
try_-dislodge (genes[i], fitness_.matrix + FITNESS.LINDEX(0, i), ages[i], 1);

361 init_gene (genes[i]);
ages[i] = 0;
}
for (i = 0; i < POPPERLAYER; i++)
evaluate (genes|[i], fitness_.matrix + FITNESSINDEX(i));
pareto_front_rowmajor (pareto_front , fitness_matrix , POP.PER.LAYER,
FITNESS_.COUNT ) ;

370 copy (genes[a], temp_gene);
mutate (temp_gene);
int age = t/POP;
evaluate (temp_gene, temp_fitness);
int new_.i = try_dislodge (temp-gene, temp_fitness, age, k);
if (is_goal_fitness(temp_fitness)) {
if (new.i < 0) {
printf(”warning:._goal_individual_not_able_.to_dislodge._anyone.in.layer %d_and._up.\n” ,
}
379 goal_indiv = new_i;

break; /* Goto mext phase x/

}
if (t = MAXOPTSTEPS || elapsed_seconds () > MAXSECONDS)

alps_status = ALPS_FAIL;
else

alps_status = ALPS_SUCC;

388
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end_phase (phase — 1);

if (steps)

xsteps = t;

)

return alps_status;

int main(int argc, char sxargv) {

int c;

int argco =
char xxargvo
fitness_type
int run_type
pid_-t pid =
random _seed

save_prefix

quiet = 0;
int force =
while ((c¢ =
switch (c¢)
{
case 'D’:
run_type
case 'T’:
run_-type

case 'F’:

argc;

argv;
FITNESS_.MEAN_LIGHTSENSOR ;
STANDARD_RUN;;

getpid ();
(long) time(NULL) "~ pid;

03

getopt (argc, argv, "DI:F:s:fgM:d:R:”))
DEBUG.RUN; break;

= atoi(optarg); break;

”

”»

fitness_type = atoi(optarg); break;

case ’'s’:

random_seed = atol(optarg); break;
case 'f’:

force = 1; break;
case 'q’:

quiet = 1; break;
case 'M’:

mut_prob = atof(optarg); break;
case ’'d’:

save_prefix = optarg; break;
case 'R’:

reset_freq = atoi(optarg); break;

case '77:
break;

default:
abort ()

}

)

// mext argument at argv[optind]

argc —= (optind — 1);

argv += (optind — 1);

!_
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srand48 (random_seed );

if (! quiet)
printf(”alps—like:.Started!\n”);

442
if (run_type =— DEBUGRUN) {
goal_fitness = 0.9;
} else if (run_-type = EASYRUN) {
goal_fitness = 0.8;
}
if (arge != 4) {
451 fprintf(stderr, "usage:_alps—like_[—fDq]-[-M_mutP]_[-R_resetF]_[-Torun—type]_[-F_fitness —ty
fprintf(stderr, ”experiment._names:._An, _Bn, _Ap, _Bp, -Ao,_Bo\n”);
return 2;
}
//register_signal_handlers ();
sim_init ();
exp-name = argv [1];
task_index = atoi(argv[2]) — 1;
460 lobotomise = (atoi(argv[3]) = 1);
//if (mkdir(save_prefiz, 0777)) {
char cmd[255];
sprintf(cmd, ”mkdir.—p.%s”, save_prefix);
if (system(cmd)) {
fprintf(stderr, "error:._cannot_create_directory.’%s’.\n”, save_prefix);
return 4;
}
469
char filename [255];
sprintf(filename, "%s/results.m”, save_prefix);
mfile = fopen(filename, "w”);
sprintf (filename , "%s/table.txt”, save_prefix);
table = fopen(filename, "w”);
sprintf (filename, "%s/run_again.sh”, save_prefix);
478 FILE *run_-again = fopen (filename, "w”);

fprintf(run_again, ”#!/bin/bash\n”);

int i;

mprintf (1, ”commandLine.—>.\"");

for (i = 0; i < argco; i++) {
fprintf(run_again, "%s.”, argvo[i]);
mprintf (0, "%s.”, argvo[i]);

}

mprintf (0, ”\”\n”);
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487 fprintf(run_again, ”\n”);

fclose (run_again);

mprintf (1, ”directory .—>.\"%s\”\n”, save_prefix);

int err;
err = experiment_phase_count (exp-name, &phase_count);
if (err) {
fprintf(stderr, ”"error:._cannot_get_phase_count_for._experiment_"%s’.\n”,
496 exp_name ) ;
err = 1;

goto finish;

sprintf (filename , "%s/eval.sh”, save_prefix);
script = fopen(filename, "w”);
fprintf (script,
505 » #1/bin /bash\n”
7cd._$(dirname_30)\n" );

int steps;

err = run_alps(&steps);

if (err) {
fprintf (stderr, "error:_alps—like._did_not._find_an_adequate_solution.\n”);
}
514 mprintf (1, "{_-success_—>_%s,_exitCode_—>-%d_}\n”, err = 0 ? ”?True” : ”False”,

err);

sprintf (filename , ”"%s/FAILURE” , save_prefix);
if (err) {
FILE* fail = fopen(filename, 7w’ );
fprintf(fail , "%d\n”, steps);
fprintf(fail , "%d\n”, err);
fclose (fail );
523 } else {
unlink (filename );

}

sprintf (filename , ”"%s/SUCCESS” , save_prefix);

if (err) {
unlink (filename );
} else {
FILEx suc = fopen(filename, "w”);

fprintf(suc, "%d\n”, steps);
532 fclose (suc);
}
finish :

if (! quiet)
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printf(”alps—like:_Finished.__Logs:_.\n\n\t%s\n”, save_prefix);

sim_uninit ();
if (mfile) fclose(mfile);
541 if (table) fclose(table);

if (script) fclose(script);

return err;



