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Abstract
Interactive Evolutionary Algorithms (IEA) use human input to help 
drive a search process. Traditionally, IEAs allow the user to exhibit 
preferences among some set of individuals. Here we present a 
system in which the user directly demonstrates what he or she 
prefers. Demonstration has an advantage over preferences because 
the user can provide the system with a solution that would never 
have been presented to a user who can only provide preferences. 
However, demonstration exacerbates the user fatigue problem 
because it is more taxing than exhibiting preferences. The system 
compensates for this by retaining and reusing the user 
demonstration, similar in spirit to user modeling. The system is 
exercised on a robot locomotion and obstacle avoidance task that 
has an obvious local optimum. The system is compared against a 
general and a specific fitness function designed to remove the local 
optimum. We show that our proposed system outperforms most 
variants of these completely automatic methods, providing further 
evidence that Evolutionary Robotics (ER) can benefit by combining 
the intuitions of human users with the search capabilities of 
computers.

Introduction
The dream of Evolutionary Robotics is to automatically design 
robot brains and bodies to do any given task. That dream remains 
unfulfilled, but projects like the protein folding game FoldIt [1] 
support the idea of not taking humans completely out of the loop. 
IEAs have traditionally allowed humans to exhibit preferences. In 
this work, we allow the user to demonstrate how the robot should 
move to do a task. After all humans have bodies and have intuitions 
about how to avoid an obstacle, jump over a gap, or ascend a 
staircase. The proposed hybrid fitness tries to take low-level user 
demonstrations into account.

Method
The robot used in this investigation is a quadruped walker as 
shown in Figure 2. The controller is a feed-forward neural 
network. The robot succeeds if it gets within 5 units of the target.  
Three fitness functions were evaluated. 

1) High-level fitness naïvely minimizes the distance between 
the robot and the target T. 

2) Mid-level fitness minimizes the distance between the 
robot and the waypoint W first then minimizes the distance 
between the robot and the target T. It has an alpha parameter 
which must be tuned, so three “goldilocks” values are used.

3) Hybrid fitness minimizes the distance between the robot 
and target and concurrently minimizes the user 
demonstration error.  An initial fixed demonstration, a user 
surrogate, caused the robot to move to the right.

Results and Discussion 
Figure 3 shows the results. The high-level fitness function performs 
the worst, as expected. The mid-level fitness functions perform 
better than the high-level fitness function for some parameter 
values. The hybrid fitness does statistically the same or better than 
all the other fitness functions.

Future Work
This paper used a user surrogate. However, harnessing human 
intuition remains the object of this work. A study using this system 
with human participants on this task and other tasks that do not 
decompose as easily, like gap jumping, remains to be done.
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Figure 3: The results show the proportion of successful evolutionary trials that

produced a robot that avoided the obstacle. Thirty trials were performed for

each fitness function with a population of 20 for 100 generations using NSGA-

II. The stars represent significantly di↵erent results determined by the Fischer

Exact Test.

-5 0 5
x

-10

-5

0

z

s1 s2

T

W
L

x

y

z

target

barrier

robot

Figure 2: (a) A quadruped robot is tasked with moving to the target. To

successfully do this, it must navigate around the barrier. (b) The robot has two

line-of-sight target sensors s1 and s2. The target T is the global optimum. The

robot succeeds if it passes the dashed line bounding T. The local optima for

fhigh is located at L, where it will often become trapped. The mid-level fitness

function fmid uses a waypoint W parameterized by ↵ sized radii.
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Figure 1: Basic outline of an evolutionary algorithm: Step 1) Randomly gen-
erate a population of robots. Step 2) Evaluate performance on a task, e.g.,
distance traveled. Step 3) Select best performers. Step 4) Breed or mutate
selected individuals to create a new population. Repeat steps 2 through 4.


