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Abstract—Interactive Evolutionary Algorithms (IEAs) use
human input to help drive a search process. Traditionally,
IEAs allow the user to exhibit preferences among some set of
individuals. Here we present a system in which the user directly
demonstrates what he or she prefers. Demonstration has an
advantage over preferences because the user can provide the
system with a solution that would never have been presented to
a user who can only provide preferences. However, demonstration
exacerbates the user fatigue problem because it is more taxing
than exhibiting preferences. The system compensates for this by
retaining and reusing the user demonstration, similar in spirit
to user modeling. The system is exercised on a robot locomotion
and obstacle avoidance task that has an obvious local optimum.
The user demonstration is provided through low-level control.
The system is compared against a high-level fitness function that
is susceptible to becoming trapped by a local optimum and a
mid-level fitness function designed to remove the local optimum.
We show that our proposed system outperforms most variants of
these completely automatic methods, providing further evidence
that Evolutionary Robotics (ER) can benefit by combining the
intuitions of inexpert human users with the search capabilities of
computers.

I. INTRODUCTION

Citizen science, wherein inexpert users contribute to scien-
tific research, has demonstrated that non-expert users can assist
researchers on tasks that appear to require a great deal of train-
ing, such as Foldit, the crowd-sourced protein-folding game
[12]. Interactive evolutionary algorithms seem like a natural
means of integrating user input and computational algorithms
for certain problem domains [7, 10, 19, 20] because input from
a user warps and, if done correctly, can smooth the fitness
landscape for the evolutionary algorithm. However, it is not
yet clear how, when, and how much the user should influence
the evolutionary algorithm. How should one incorporate user
input? Should an algorithm present complete solutions that
the user ranks according to preference? Should an algorithm
present solutions that the user may directly manipulate? This
paper explores the latter idea whereby the user may take a
solution and directly manipulate it to suit his or her preference.
Some similar problems crop up in approaches that require the
user to indicate preferences between solutions and approaches
that require the user to provide a demonstration, so it is worth
surveying work on user preferences.

Traditional IEAs rely on the user to effectively become
the fitness function of an EA. The user is presented with a
set of individuals. The user chooses one or more individuals
according to their preference. The EA then selects the favored

individuals to generate the next generation. This can be es-
pecially effective in domains that rely on human perception
[9, 10, 18, 19].

However, driving search by user input does have a number
of issues. One limitation is that the fitness function is costly,
degrades over time, and is imprecise. The degradation over
time is known as user fatigue [20]. Typical non-interactive evo-
lutionary algorithms require thousands of fitness function eval-
uations to find useful solutions. This is particularly problematic
if the user is required to demonstrate preferred solutions
rather than simply judge the relative merits of automatically-
generated solutions.

One thread of research seeking to alleviate the user fa-
tigue problem is user modeling, originally presented in the
evolutionary algorithms domain by Schmidt and Lipson [17],
inspired by the Estimation-Exploration Algorithm [4, 6]. The
basic scheme is to collect the user responses and automatically
build a user model that may be used with impunity. Subsequent
work by Hornby and Bongard has shown that user modeling
can produce solutions of better quality to those produced by a
traditional IEA and with far fewer user interactions [13, 14].

Although the user input differs in this paper from the work
on user preferences in that it allows the user to demonstrate
what they prefer, it needs to overcome the user fatigue problem
to even be feasible. It must have a means of retaining and
reusing the user demonstrations similar in spirit to the way
user modeling retains, reuses, and learns the user preferences.

Demonstration is meant broadly, i.e., if the domain involves
creating images as in Picbreeder [18], the user might demon-
strate their preference by painting a portion of an image red,
signaling to the search algorithm that it should favor images
with red coloring. If the domain involves creating 3D shapes as
in Endless Forms [9], the user might demonstrate by extruding
or molding the form. If the problem is a robotics task, the user
might demonstrate by moving the joints of the robot directly,
an idea pursued in this paper. Precursors to this idea are known
as behavioral cloning [2], programming by demonstration [8],
also known as learning by imitation.

This paper uses a robotics task to evaluate the proposed
system: a robot must locomote around a barrier to reach a
target (see Fig. 1). This task was chosen in part to compare
with concurrent work on user preferences [5]. In this paper
we consider three levels of control: high-level, mid-level, and
low-level. Consider the quadruped robot attempting the task
as shown in Fig. 2. A high-level controller might command
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Figure 1. A quadruped robot is exercised on a task to locomote and approach
the target. To successfully do this, it must navigate around the barrier.

the robot to go to the target location; it need not specify that
there is, or how to avoid, an obstacle. A mid-level controller
might command the robot to move rightward (+x), presumably
to avoid the barrier, then go forward (−z), then go leftward
(−x) towards the target; thus resembling commands a human
might provide using a remote control. A low-level controller
commands the angle of each joint directly; it is likely that
simultaneous dictating all joint angles would be troublesome
for a human controller. By analogy with high-level control, we
consider a high-level fitness function to be one that captures the
high-level objective: reach the target without trying to specify
details like avoid obstacles. And like mid-level control, we
consider a mid-level fitness function to be one that decomposes
the problem somewhat, e.g., go toward this position, then go
toward that object.

In accepting user input, it behooves us to consider at what
level of detail we will accept that input, at a high-level, mid-
level, or low-level? Traditionally, the dream of Evolutionary
Robotics (ER) has concentrated on automatically producing
robot controllers without any human input, but this usually
translated into researchers iteratively producing mid- or high-
level fitness functions, which in some cases seems like a
herculean effort [21]. In contrast, this system accepts low-
level inexpert user input coupled with a high-level objective
and a means of retaining and reusing that input. The aim is to
test the counter intuitive notion that human intuition, exercised
through low-level control, may help steer search away from
local optima.

Although this paper uses low-level control for user demon-
stration, that should not be regarded as its essential feature. A
user demonstration could use mid-level control, e.g., a user
might describe the path they wish for the robot to follow.
A user demonstration could also use high-level control. For
example, in work by Bongard, Beliveau, and Hornby a user
may define the fitness function by placing the robot next to
a target such that its target sensors are some small value [3].
The fitness function will select for robots that come closest
to achieving those target sensor values. Although Bongard et
al. do not couch this method in terms of user demonstration
or high-, mid-, or low-level control, it is a good example of a
user demonstration that uses high-level control.

Why focus on avoiding local optima? Because these are
the places where common sense, high-level thinking and fitness
functions get stuck. Other approaches to avoiding local optima
are worth mentioning. Novelty search works well avoiding

local optima on constrained behavior spaces with deceptive
tasks [16]. Work by Karpov on human-assisted neuro-evolution
through examples closely matches the user demonstration line
of thought pursued in this paper [15]. The main contribution
of this paper is to show that low-level user demonstration may
help avoid local optima in ER.

II. METHODS

This paper compares three distinct fitness functions with
a couple of variants on a robot locomotion and obstacle
avoidance task. This section will describe the task, the robot,
the fitness functions, and the user surrogate. There are three
principle fitness functions: High-level, mid-level, and our pro-
posed hybrid IEA that combines a high-level fitness function
with a low-level user demonstration. No low-level fitness
function is defined but low-level control is discussed. The
objective is to demonstrate that the hybrid IEA can allow an
inexpert user to avoid the local optima by partly demonstrating
how the robot should behave. To assess the performance of this
system, a surrogate is used in place of the user.

A. Task

The task chosen to exercise these methods is a robot
obstacle avoidance task as shown in Fig. 1. A barrier sits
between a robot and a target object. The target object emits
light which cannot be seen from behind the barrier. The robot
succeeds at this task if it can get within 4.5 units of the target
within 30 simulated seconds, which requires it to move around
the barrier. The local optima depends on the fitness function;
however, this task was selected specifically because it has an
obvious local optima for the high-level fitness function.

B. Robot

A simulated quadruped robot has eight degrees of freedom
denoted {θ1, θ2, . . . , θ8}. The joint range is constrained to
[−π/4, π/4]. The hinge joints are position controlled. The
robot has two distance sensors s1 and s2 located at positions
shown in Fig. 2. The sensors measure the distance between
their position and the target object’s position. However, the
sensors only work if within the line-of-sight of the target.
Behind the obstacle, the sensors report maximum distance.

The controller is a feed-forward artificial Neural Network
(NN) with a sigmoidal activation function. It accepts four
inputs and produces eight outputs. The first two inputs are
measures of time. A fast time measure, intended for controlling
the gait of the robot, oscillates between -1 and 1 every
simulated second. A slow time measure oscillates between -1
and 1 over the entire evaluation duration, 30 simulated seconds.
The last two inputs are sensors s1 and s2. The NN updates
the desired angle θi ten times a simulated second. The NN
has two hidden layers of twelve neurons each. Twelve was the
lowest number of neurons which adequately captured the user
demonstrated gait.

C. High-Level Control and Fitness

The task objective is to reach the target object. The most
direct and naive way to write a fitness function is to minimize
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Figure 2. This top-down view shows the robot and task environment, which
includes a barrier between the robot and the target. The target T is the global
optimum, shown with a dashed bounding radius which is the threshold for
success. The local optima for fhigh is located at L. The waypoint W is shown
with a series of successively larger radii. The radii are 10%, 30%, and 50%
of the distance between the robot and waypoint, which relate to the parameter
α with the value 0.1, 0.3, and 0.5 respectively. The robot has two sensors s1
and s2 located on the top-left and top-right side of its root body segment.

the distance between the robot and the target.1 Let rr(tf ) and
rt denote the position of the robot at the final time tf and the
target respectively.

fhigh = ||rr(tf )− rt|| (1)

Many straight forward fitness functions like this have local
optima that may trap a population in an evolutionary algorithm.
Often this requires one define a fitness function in an iterative
fashion, adding more terms to penalize against these local
optima. For a greedy optimization method, this task has an
obvious local optima (labeled L on Fig. 2). If the robot heads
directly towards the barrier and stops, it can do no better on
that side of the barrier. All small steps away from L offer
worse fitness.

D. Mid-level Control and Fitness

Rather than trying to determine the appropriate high-level
fitness function, the mid-level fitness function attempts to guide
the solution. For a mobility task like the one presented in this
paper, a natural solution is to use a waypoint, whereby the
robot is encouraged to go to a waypoint before attempting to go
towards the target. Essentially this parameterizes and composes
the high-level fitness functions in sequence. Let rr(t) denote
the position of the robot at time t. Let rw, rt denote the
position of the waypoint and target respectively. The initial
time is t0. The robot reaches the waypoint at time t1.

1All fitness functions in this paper are defined to be minimized—not
maximized.

f1(t) =
||rr(t)− rw||

||rr(t0)− rw||
(2)

f2(t) =
||rr(t)− rt||

||rr(t1)− rt||
(3)

t1 = min
t

f1(t) < α (4)

fmid =
1

tf

tf∑

t=0

{
f1(t) t < t1
αf2(t) otherwise

(5)

The parameter α defines the waypoint radius, determining
how close the robot must approach to reach the waypoint.
The fitness can be broken into two parts: 1) While the time
is between t0 and t1, the fitness is the average normalized
distance to the waypoint. 2) While the time is between t1 and
the final time tf , the fitness is the average normalized distance
to the target scaled by the parameter α. The reason for this
scaling is to avoid a local optima where a robot may more
profitably come close to a waypoint but not cross its threshold.

The parameter α is free for the choosing as is the loca-
tion of the waypoint. The parameter α determines when the
waypoint has been reached. If it is too small, the robot may
circle the waypoint for a long time, missing the waypoint. If
α is too large, the robot may pursue the target before it has
actually overcome the barrier leading back to the same local
optima exhibited by the high-level fitness function. If both α
and the waypoint position are set appropriately, this method
should succeed at the task.

E. Low-level Control

The lowest-level of control is usually direct position-,
velocity-, or force-control of the robot motors. Depending on
the morphology and motors of the robot, the low- and mid-
levels of control may blur. For instance, a remote control toy
car may be easily maneuvered using velocity control of the
wheels, in which case mid- and low-level control is essentially
the same. However, maneuvering an articulated body such as
the one used in this paper (see Fig. 1) by position-control of its
joints is not easily done, so the low-level control of its joints
is entirely distinct from a mid-level controller where one may
push a button labeled “forward”. Much research in ER attempts
to automatically derive a low-level controller to make mid- or
high-level controller available for human operators.

If low-level control can be done by humans at an expert
level, Abbeel et al. demonstrate a technique that records the
expert human demonstration, sensor data, and use a dynamics
model to derive a mid-level controller [1].

F. Hybrid Low-level Demonstration and High-level Fitness

The method we propose is a hybrid of high-level fitness and
low-level user demonstrations. Instead of having a user create
a fitness function or choose between a set of preferences, the
user demonstrates what he or she wants the solution to do.
In case of a robot, this means moving the joints or setting
their positions at a particular time. The user demonstration is
not expected to be complete or expertly done, so it is not clear
how much weight one should place on the user demonstration.
Either extreme is unsatisfactory: Respect the user too much,
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Figure 3. The interactive system works as follows. 1) The initial robot
controller does not move (θi(t) = 0). 2) A user may record a demonstration
by moving the joint positions in time. Or a user may sweep over the time
interval and set joint positions for a specific time t. 3) A new controller θi(t)

′

is constructed for each change the user makes in real-time. 4) Once a user is
satisfied with the demonstration, he or she may elect to evolve the controller
for a number of generations, 5) at which point the derived controller is used
to train a new Neural Network (NN) (trained until 5000 epochs elapse or the
MSE is less than 0.001). 6) The new NN is seeded into the initial generation
used by NSGA-II. 7) The user is presented with the Pareto front, and may
switch between the individuals. 8) The user may optimize further, or 9) the
user may make further demonstrations with a particular individual, or 10) the
user may stop.

and no solution better than what the user provided will be
found. Respect the user too little, and the user demonstration
will have no bearing on the solution nor any resemblance to
the user demonstration.

To cast a wide net between respecting the user demonstra-
tion while allowing for exploration of effective solutions, this
paper uses a multi-objective approach. The first objective is the
high-level fitness function already defined in Eq. (1), which is
the distance between the robot at the end of the evaluation and
the target. The second objective is the User Demonstration
Error (UDE), which captures how much a controller differs
from what the user demonstrated.

[fhybrid]1 = fhigh = ||rr(tf )− rt|| (6)

[fhybrid]2 = UDE (7)

Before defining the UDE, let us take a step back and
discuss how the system works with the user. Figure 3 shows a
detailed flow of user interaction. Focusing on the initial user
interaction, the system allows the user to manipulate the robot
as though it were only a low-level remote control (because
the initial controller is set to θi(t) = 0 by making the NN
weights all zero). In general though, the user can record his
or her demonstration on top of the current controller and see
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Figure 4. This is an example of augmented controller construction. Given
an original controller θ(t), a user demonstration of two points (s1, v1) and
(s2, v2), we wish to construct an augmented controller θ(t)′ that satisfies the
user demonstration. Broadly the operation takes the difference between the
user demonstration points and the controller vi − θ(si), smooths them out
with compose(t; . . .), then adds that to the original controller θ(t) to produce
the augmented controller θ(t)′ = θ(t) + compose(t; . . .). In this paper θ(t)
is implemented by a neural network.

it integrated immediately. This requires that we can take an
existing controller θi(t) and construct an augmented controller
θi(t)

′ that incorporates the user demonstration. The UDE error
can be defined more easily once the augmented controller
is defined. Thus two operations are performed with a user
demonstration: 1) augmented controller construction and 2)
user demonstration error calculation.

1) Constructing an Augmented Controller: Figure 4 shows
graphically what the this section explains in detail: how to
construct an augmented controller based off a user demonstra-
tion. First let us define what a user demonstration is. A user
demonstration is represented by a set of tuples. Each tuple
consists of the time, joint index, and joint value (s, i, v). This
is interpreted to mean at time s the user has demonstrated that
joint i should be at position v. Consider a user demonstration
that consists of only one tuple (s, i, v) with no prior controller,
i.e. θi(t) = 0. Without loss of generality, one can omit the joint
index i and corresponding subscript on the controller θ(t).
Thus the tuple under consideration is only the time offset and
joint value (s, v). The construction of the augmented controller
θ(t)′ will proceed incrementally, starting with the special case
of one tuple and proceeding to the more general case.

First the user demonstration is “smoothed out” with a
triangle element (Fig. 5) since the controller is expected to
interact with a continuous system. The triangle base duration
for the controller bc is chosen to be 1 second.

θ(t)′ = tri(t; s, bc, v) (8)

In the case of a user demonstration of two tuples (s1, v1)
and (s2, v2) where v1, v2 ≥ 0, one must compose these
triangle elements some how. Because the time offsets s1 and
s2 may differ by an arbitrarily small amount, composition
by addition is inadvisable because the triangle bases would
overlap. Instead, the triangle elements are composed using the
max function.

θ(t)′ = max(tri(t; s1, bc, v1), tri(t; s2, bc, v2)) (9)
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Figure 5. The triangle element “smooths out” a user demonstration. It is
denoted tri(t; s, b, h) and fully described by its parameters: time offset s,
base duration b, and height h. It could be substituted by other smoothing
functions, e.g., a Gaussian function.

For cases where v1, v2 < 0, the min function is used instead
of max.

θ(t)′ = min(tri(t; s1, bc, v1), tri(t; s2, bc, v2)) (10)

The general case for a user demonstration of n tuples (s1, v1),
(s2, v2), . . . , (sn, vn). We separate them in two sets: 1) the
positive set is relabeled as (s1, u1), (s2, u2), . . . for vi ≥ 0,
and 2) the negative set is relabeled as (s1, w1), (s2, w2), . . .
for vi < 0. Because this formulation will be used again, we
will name the function compose which accepts the time t and
a set of tuples as parameters.

θ(t)′ =compose(t; (s1, v1), . . .) (11)

compose(t; (s1, v1), . . .) (12)

=max(tri(t; s1, bc, u1), tri(t; s2, bc, u2), . . .)

+min(tri(t; s1, bc, w1), tri(t; s2, bc, w2), . . .)

However, when the user demonstrates an action, we do
not assume that no prior controller exists. With a given prior
controller θ(t), which in the case of this paper is a NN,
we must amend Eq. (11) to only incorporate the difference
between the prior controller and what the user demonstrated.
That completes the construction of an augmented controller
θ(t)′.

θ(t)′ = θ(t) + compose(t; (s1, v1 − θ(s1)) (13)

(s2, v2 − θ(s2))

...

(sn, vn − θ(sn)))

2) Calculating the User Demonstration Error: Figure 6
shows graphically how the UDE is calculated for some con-
troller in question φ(t). This section describes the operation
in full detail.
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Figure 6. This is an example of calculating the User Demonstration Error
(UDE) for some controller φ(t). Part (a) shows the user demonstration points,
the controller in question φ(t), the augmented path θ(t)′, and the difference
between the two. Part (b) shows the intermediate steps to calculate the UDE at
time t: We examine the absolute difference between the controller in question
φ(t) and the augmented controller θ(t). (Note: the added constants are only
to separate the graphs visually.) If the user has made no demonstration near
some time s, then there can be no error which is captured by the ∆e(t)
term. Multiplying these two terms together supplies the UDE at time t, and
integrating that function over the time interval (not shown) is the UDE.

Given some controller φ(t), how different is it from what
the user demonstrated? The answer to this question is captured
quantitatively by the User Demonstration Error (UDE). In
defining this error, there are three driving considerations: 1)
When the user demonstrates v at time t, there should be a
maximum error at time t. 2) When the user has performed
no demonstration on or near time t, there should be no error
at time t. 3) In between those extremes, the error should be
at an intermediate value. Thus if the user has demonstrated
nothing, the UDE is zero by definition. These considerations
point toward to using the same triangle element and compose
function to calculate the error, albeit with slight differences.

The definition is built up incrementally by considering the
simplest case first. Let the user demonstration error at time
t be denoted ude(t). Given one user demonstration (s, v),
the prior controller θ(t), and a new controller φ(t). What is
the ude(t) for φ(t)? Using the above method (Section II-F1)
one constructs augmented controller θ(t)′ based off the prior
controller θ(t) used when the demonstration was made.

ude(t) = |φ(t)− θ(t)′|∆e(t) (14)

∆e(t) = tri(t; s, be, 1) (15)

Equation (14) is similar to ude(t) = |φ(t)−v|∆e(t) except that
Eq. (14) takes into account what the prior controller θ(t) does
on the periphery of the user demonstration. The error delta
Eq. (15) captures the idea that at time s, the user demonstrated
the controller should be at value v; therefore, that should be
the maximum error. Outside of the base duration be, the error
should be zero and in between it is some intermediate error.



The base duration of the error be is set to 1 second, the same
as the base duration for the augmented controller bc.

The general case of the ude(t) for a user demonstration
with n tuples is a simple extension.

ude(t) = |φ(t)− θ(t)′|∆e(t) (16)

∆e(t) = compose(t; (s1, 1), . . . , (sn, 1)) (17)

Finally, the sum of time dependent ude(t) over an interval of
time provides the user demonstration error.

UDE =

∫ tf

0

ude(t) dt ≈

m∑

i=0

ude(i∆t) (18)

G. Surrogate User

This paper uses a user surrogate to perform this compari-
son. This user surrogate sets the initial user demonstration only.
It does not iteratively update with new user demonstrations,
which would be expected from a human user. Iterative updates
are omitted because it is not clear how to program a surrogate
that reacts to the robot’s current behavior. Initially, however,
the robot does nothing by fiat, so that allows us to apply a
demonstration that was made by a user, in this case one of the
authors, without requiring it to be reactive.

When initially using this system, one essentially has low-
level control of the quadruped. It is difficult initially to make
the robot locomote. One of the authors determined that by
oscillating any of the joints attached to the root body, one
may effect motion in the direction of that leg. Whether people
can in general do likewise is an open question.2 With this
small amount of control, one may set the robot off in any
cardinal direction. For this task, the robot is set off towards the
positive x axis (to the right). One might think this is cheating
since the user knows this will help the robot get around the
barrier; however, that is in fact the point of this experiment—
to show that the user through demonstration can help avoid
local optima.

The user demonstration used by the surrogate user is shown
in Fig. 7 (a). It is described as {(0.35, 1,− 3π

16
), (0.75, 1, 7π

40
)}.

This user demonstration means at 0.35 seconds set joint 1 to
− 3π

16
radians and at 0.75 seconds set joint 1 to 7π

40
. These

values were determined by making a gait that walked to
the right interactively (see Fig. 3), then recording the user
demonstration values to only two significant figures. Because
this is a locomotive task, we chose for the time the user
specified to be connected to the fast time measure which causes
the demonstration to effectively repeat every second as shown
in Fig. 7 (b).

2This is merely anecdotal but during a live demo, a person did accomplish
this obstacle avoidance task using only low-level control of the quadruped.
Although it was not clear that they discovered a means of repeatable mid-
level control.
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Figure 7. This figures shows the surrogate user demonstration. Part (a) shows
the two user demonstrated points. The dashed lines represent the triangle
elements that “smooth” the demonstration, and the solid line represents the
augmented controller. Part (b) shows that the augmented controller is periodic
due to the fast time measure in the neural network input. Thus it produces
an oscillating pattern, which in turn oscillates one proximal hinge on the
quadruped causing it to move to the right (+x). Note: although this is the only
user demonstration used, it places a pressure throughout the entire evolutionary
trial to select for controllers that preserve a similar motion for that joint.

III. RESULTS

The optimization algorithm used was NSGA-II [11] with a
population of 20 individuals and 100 generations. The physics
simulator used time steps of 1/60 simulated second. Each robot
was evaluated for 30 simulated seconds. Figure 8 shows the
proportion of success trials from 30 independent trials of each
fitness function and its variants. A successful trial is defined
as any trial that contains one individual that comes within 4.5
units of the target object at any time during the evaluation. The
same results are provided numerically in Table I. The hybrid
fitness function outperforms the high-level fitness function and
is competitive with the mid-level (waypoint) fitness function
and outperforms it significantly in one case.

Some variations of the hybrid fitness function were also
evaluated to try and pinpoint what parts of the hybrid fitness
function are effective. Three variants were considered: (1)
“dependent”, (2) “no seed”, and (3) “no error”. The first variant
“dependent” is probably best explained by considering that
normally the user demonstration is independent for each joint,
i.e., changing one joint has no effect on the other joints.
However, one can imagine that when a user actively changes
some joint, this choice also exhibits a passive preference for the
current positions of the other joints. Operationally this means
that when a user actively demonstrates (s1, v1), the system
also records (s1, vi = θi(s1)) for all other joints. This has no
effect on constructing the augmented controller but does act to
preserve those passive preferences when computing the UDE.
As Table I shows the “dependent” variant did significantly
worse than the hybrid fitness function. However, because of
the limitation of the initial robot being inert, it seems like this
variation may be worth investigating further.



Figure 8. The results show the proportion of successful evolutionary trials that
produced a robot that avoided the obstacle. Thirty trials were performed for
each fitness function with a population of 20 for 100 generations using NSGA-
II. The stars represent significantly different results determined by the Fischer
Exact Test. The high-level fitness function minimizes distance to target. The
mid-level fitness function attempts to first go to a waypoint then go toward the
target. The hybrid fitness function minimizes the distance to the target and the
user demonstration error provided by the user surrogate. The hybrid fitness
function does significantly better than the high-level fitness and is better or
competitive with the mid-level.

Table I. SUMMARY OF EXPERIMENTAL RESULTS. THE P-VALUES ARE

OBTAINED BY COMPARING EACH EXPERIMENT WITH fHYBRID USING THE

FISCHER EXACT TEST.

Experiment Percent Successful p-value

fhigh 33.3% p < 0.001

fhybrid 90.0% p = 1

fmid α = 0.1 54.8% p < 0.01

fmid α = 0.3 80.0% p = 0.5

fmid α = 0.5 73.3% p = 0.2

fhybrid dependent 53.3% p < 0.01

fhybrid no seed 96.7% p = 0.6

fhybrid no error 40.0% p < 0.001

The “no seed” variant differs in the following way. Nor-
mally before evolution begins, the initial population is seeded
with a NN controller. This NN is found by back-propagation
based off the augmented controller (described in Fig. 3), so
that the NN produces a pattern very close to what is shown in
Fig. 7. Thus it starts out walking to the right. The “no seed”
variant does not seed the initial population with a walking
NN. Instead it uses a random initial population. As Table I
shows the performance of “no seed” variant is comparable to
the hybrid fitness function. This is intriguing because it means
that the UDE pressure is sufficient to select for controllers that
presumably walk to the right.

Lastly, the “no error” variant does seed the population with
a NN that walks to the right, but it does not use the user
demonstration error (UDE) as its second objective. Instead it
uses some constant value for the second objective. The “no
error” variant does significantly worse than the hybrid fitness
function probably because the seeded walker is eliminated
from the population and the evolutionary trial degrades into a
replication of the high-level fitness function. This result shows
that the UDE is an integral element to this method’s efficacy.

IV. DISCUSSION

In this paper we propose that allowing users to make low-
level, inexpert demonstrations to control articulated bodies may
help avoid local optima, without requiring the user to refor-
mulate the fitness function. This might appear to contradict
prior emphasis that humans are not likely particularly good at
unassisted low-level control of articulate bodies. However, this
method can be seen as an assisted low-level control that can
optimize suggestions offered by the user.

The task environment presented in this paper is easily
decomposable into discrete steps: (1) go to here then (2) go to
there, which is what the mid-level (waypoint) fitness function
relies on. However, low-level user demonstration might be
more profitably applied to tasks that have no such obvious
mid-level decomposition. For instance, consider the task of
jumping over a large gap with a quadruped. Imagine trying to
solve it by placing waypoints for the robot to move toward. If
one places a waypoint in the middle of the gap, does that help
the robot achieve the task in any way? Suppose one places a
string of waypoints along the arc of an ideal jump. Does that
help? It is not clear to us that it would help. Instead consider
using a system like the one presented in this paper with the
same task. We have bodies. We can jump. We have an intuition
about how to do it. Perhaps the jump ought to be initiated from
a crouched position somewhat like coiling a spring, then a burst
of movement releasing the spring. Supplying that information
solely through low-level control would probably not cause the
robot to jump over the gap, but this system allows us to offer
just such a suggestive solution that can be further refined by
an automatic search procedure.

A. Limitations and Future Work

The surrogate user is a large limitation of this work. To
support the claim that user demonstration is an effective means
of combining the human intuition with automated search, a
study must be done with actual users.

The obstacle avoidance task can be easily decomposed into
a set of steps for a mid-level controller, which makes low-level
control seem inappropriate. Investigating a number of different
tasks which vary in terms of difficulty depending on the
level of control—high, mid, or low—would be enlightening.
For example, the task of jumping over a gap seems more
appropriate for low-level control.

The construction of the augmented controller from the user
demonstration was only dependent on time. It did not have
to take into account the line-of-sight inputs since the robot
begins behind the wall. However, in the more general case, the
controller may have inputs such that the user demonstration is
meant to suggest a relationship with these inputs, e.g., if the
robot is headed toward an obstacle, turn right, which is input
dependent—not at time s1, turn right, which is time dependent.

This system only allows for the user to demonstrate through
low-level control. However, as mentioned in the introduction,
user demonstration may be provided at low-, mid-, or high-
levels of control. User demonstration with high-level control,
however, is still susceptible to becoming trapped in the same
kind of local optima presented here. This suggests that perhaps
the user ought be able to choose the level of control appropriate
to the task.



V. SUMMARY

This paper described an interactive system that accepts
user demonstrations via low-level control. It compared the
system with a user surrogate to a high-level fitness function
and a mid-level fitness function with three different parameter
settings. The system achieved a 90% success rate over 30
trials, which did significantly better than the high-level fitness
function success rate of 33% (p < 0.001) and significantly
better than the mid-level fitness function (α = 0.1) rate of
55% (p < 0.01) and was comparable for the other parameter
settings which achieved a success rate of 80% (p = 0.5) and
73% (p = 0.2). Some variants of the system were exercised
to determine what features were strictly required to achieve
its performance. Limitations of this system were discussed
along with suggestions for future work. This paper submits
that IEAs can accept more than user preferences, and user
demonstrations may be acquired through low-, mid-, and high-
level control. The ultimate hope of this line of research is to
use user demonstrations to harness inexpert human intuition
such that one may profitably crowd-source challenging tasks
in evolutionary robotics.
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